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Abstract

Effects of wind tunnel free-~stream distur-
bances on boundary-layer transition are reviewed.
Experimental results show that free-stream distur-
bances dominate the transition process as determined
by the experimentally measured transition Reynolds
numbers on simple geometries (flat plates and sharp
cones). Principal modes of disturbance are turbu-
lence (ﬁ/Um) and acoustic sound (37qm) at subsonic
speeds; hole/slot acoustic resonance at transonic
speeds (§7qm); and tunnel wall turbulent-boundary-
layer radiated noise at supersonic-hypersonic speeds
(P/q,). Data correlations :ad resulting empirical
equations that show tu: direct relationship between
traansi-ion Reynolds nuibers and free-stream distur-
bance levels are presented and discussed.

1.0 Introduction

Figure 1 illustrates overall publication
levels and trends of transition research during the
last 40 years. Studies into the basic mechanisms
contributing to boundary-layer instability and
transition have been reported in Refs. 1 through 10.
Experimental studies of transition Reynolds numbers
at subsonic~transonic, supersonic-hypersonic Mach
numbers have been ieported in Refs. 7 through 39.
Correlation and semi-empirical methods for predict-
ing the occurrence of transition have been reported
in Refs. 5 and 6, 14 through 18, 22 through 28, and
37 through 50.

The widespread interest in trans.*ion research
can be attributed to two basic scientific and engi-
neering groups: (1) academia and (2) developers of
flight vehicles. The complex mathematical and
fluid-mechanics process inherent in the boundary-
layer transition process offers a challenge unsur-
passed in the history of fluid mechanics. From the
practical viewpoint of aircraft and missile design,
the location of transition (as illustrated in
Fig. 2) is a major factor that can often have a
first order effect on skin-friction drag, surface
heat-transfer rates, flow separation and surface
pressure distributions, extent of shock boundary-
layer interactions, flow separation and control ef-
fectiveness, unsteady flow phenomena, vehicle sta-
bility and control, surface pressure fluctuations,
structural fatigue, acoustic noise, and others.

Although the boundary-layer transition phe-
nomenon has received widespread attention, the
transition process is still not completely under-
stood. Specifically, today, there is no single
theoretical or empirical method that will predict
the onset of transition under typical conditions
that exist in flight or in ground test facilities.

A. M. 0. Smith (1972) (51) commented on the current
state of being able to predict, in general, the oc-
currence of boundary-layer transition. Presented
in Fig. 3 is Smith's qualitative assessment of the
percentage of time that a prediction would be about
90 to 95% correct. Note that in 1972 (after 90
years of transition research), the understanding of
the transition process rated only about 15% on pre-
dictability as compared to the laminar-turbulent
boundary~layer understanding level of about 85 to
90%. Even today, the curve of Smith can only be
extended a modest amount as suggested by the dashed
extension in Fig. 3. Figure 3 provides some appre-
ciation for the complexity of the transition pro-
cess.

Ls indicated in Fig. 1, the study of boundary-
layer transition, particularly at high speeds, has
been an irea of very active research during the
last 25 years. Beginning in the late 1960's and
continuing into the late 1970's, studies of free-
stream disturbance effects on the boundary-layer
transition Reynolds numbers has been the focal point
of transition research.

In particular, the effects of free-stream dis-
turbances on boundary-layer transition at transonic-
supersonic-hypersonic Mach numbers have been of
world wide interest in recent years.

The purpose of this paper is to provide a
general review and summary of the effects of free-
stream disturbance on boundary-layer transition
Reynolds numbers (Reg) in wind tunnels. Types of
free-stream disturbances in wind tunnels (subsonic-
transonic~supersonic and hypersonic) will be dis-
cussed with special attention devoted to radiated
acoustic noise disturbance levels in supersonic and
hypersonic wind tunnels. Dominance of free-stream
disturbances on the transition process will be
shown. Correlation of transition Reynolds numbers
(Ret) with disturbance levels will be reviewed, and

various Re, prediction techniques (including limita-

tions and application) will be discussed. Recent
transonic-supersonic flight data published by

Dougherty(-‘}6> are also included.

Most of the material presented in this paper
was published by the author in Ref. 50. Indepth
discussion, definitions, and descriptions of test
models, test apparatus, test techniques, and test
facilities are included in Ref. 50. Much of the
transition and disturbance data included in Ref. 50
are presented in chronological format and grouped
according to contributing nations and organizations.
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2.0 Wind Tunnel Disturbances

Kovasznay (1953)(52) theoretically identified
three possible disturbance sources in wind tunnels:
(a) vorticity fluctuations (turbulence), ¥; (b) en-
tropy fluctuations (or temperature spottiness), T'
and (c) sound waves, . Vorticity and entropy fluc-
tuations are essentially covected along streamlines
and are traceable to conditions in the settling
chamber. Sound disturbances can travel across
streamlines and consequently can originate in the
stilling chamber and from the boundaries of the test
section. The turbulent boundary layer (shear layer)
on the tunnel wall is also a source for radiating
sound (acoustic noise) disturbances. The three
fundamental and distinctly different types of free~
stream disturbance modes can exist independently in
compressible flow wind tunnel facilities as illus-
trated in Fig. 4. The disturbances are propagated
into the free stream, sustained in their original
mod2 form and then transmitted by the test gas over
the test article. Vorticity (¥) and acoustic noise
(¥ disturbances are present, at va-ying intensity
levels, in all wind tunnels. Disturbances U and P
can be of significant magnitude, depending on the
Mach number iang2, to cause first order effects,
and in many cases a dominating effect on the tran-
sition process and transition Reynolds number (Ret)
on wind tunnel test models. There are no data to
date, to the author's knowledge, that establish en-
tropy fluctuations (T) as having a significant
(first-order) effect on the transition process.

. This section will discuss the spectra and in-
tensity levels of the three disturbance modes
(T, P> T) in subsonic, transonic, and supersonic-
hypersonic wind tunnels. Correlations of boundary-
layer transition with disturbance intensities will
be presented in Section 5.0.

Subsonic Tunuel Disturbances

Free-stream disturbances in subsonic aerody-
namic wind tunnels are typically of two general
types: (1) turbulence (velgrity fluctuations) (u;
and/or (2) acoustic sound (p), Figs. 4 through 7.

Velocity fluctuations (turbulence) (u) are
generated in the stilling chamber as a result of
inlet mass flow separated regions, wakes from flow
straightens (honeycombs, screens), support braces,
etc., and then convected along streamlines over the
test model as jillustrated in Flg. 4. Research by

Dryden (1936) (53) Hall (1938),° %) Schubauer and
Skramstad (1947), () Boltz et al. (1960), (55)
Spangler and Wells (1968)(56) and Hall and Gibbings
(1972) (+8) have shown that turbulence intensities
(u/U ) can be expected to vary from 0.1 to . 3.0%,

as illustrated in Fig. 5. By proper selection and
placing of damplng screens in the stilling chamber,
the turbulence (u/U ) levels can be reduced to
values below 0.1%.

Acoustical disturbances can be of the stand-
ing wave (organ pipe) type caused by resonance in
the test section or traveling acoustic waves
(acoustical noise) caused by fan noise, sound gen-
erators, etc. Schubauer and Skramstad (1947)(8)
found in their wind tunnel studies that for distur-
bance levels (EVUm) less than 0.05%, 90%Z of the
energy was acoustic energy generated by the fan;
this is confirmed by the spectra shown in Fig. 6
taken from Ref. 8. The total intensity (U/Uw) of

0.033% corresponded to a flow velocity of 80 fps.
These studies indicated that acoustical sound can
account for essentially all the disturbance present
in subsonlc wind tunnels having very low intensity
levels (u/U < 0.1%).

Spangler and Wells (1968)(56) studied the
spectra and intensity levels associated with
acoustic noise generated by a discrete frequency
air-driven rotating-wave sound generator. Intensity
levels (u/U ) from 0.03 to 0.32% at various funda-
mental frequenc1es ranging from 27 to 82 cps were
generated * Typical noise and turbulence spectra
for u/U = 0.09% (from Ref. 56) are shown in Fig. 6.
The presence of the fundamental frequency and sev-
eral harmonics should be noted in the noise spectra.
Turbulence generated by the grid mesh in the still-
ing chamber produced no discrete frequencies.

The studies of Refs. 8 and 56 have established
that the intensity 1evels of either turbulence (u)
and/or acoustic noise (p) can be significant 'in sub-
sonic tunnels. To properly identify the free-
stream disturbances mode, measurements of intensity
and spectra must be made. With proper wind tunnel
design, the free-stream disturbance levels can be
reduced to intensities less than 0.05%. The effects
of discrete frequencies at the same intensity level
on boundary-layer transition will be discussed in
Section 3.0.

Transonic Tunnel Disturbances

As shown by Uberoi (1956)(57) flow expansion
in a wind tunnel nozzle significantly reduces still-
ing chamber turbulence (U, as shown in Fig. 8.

Velocity fluctuations could be significant in
a transonic tunnel, but little information has been
published to date.

Noise (;) attributable to wall hole/slot
resonance in porous and/or slotted wall transonic

wind tunnels is the dominant source of free-~stream

disturbance as illustrated by Varmer (1973),(58)
Fig. 9, and measured by Credle (1970, 1971),(J9’60)
Dougherty (1974, 1980),(35:36) owen (1979),(61) and

Mabey (1976).(62) These studies documented the in-
tensity levels and spectra from many tunnels lo-
cated in the USA and Western Europe. Typical tran-
sonic aerodynamic noise spectra and intensity meas-
ured in a porous wall test section using a
microphone mounted on a cone test model are pre-
sented in Fig. 10 as taken from Ref. 35.

In general, porous/slotted-wall transonic
wind tunnels are classified as very noisy compared
to well-designed solid-wall subsonic tunnels. Cor-
relations of Rey with transonic wind tunmel noise

ad

intensity (p/q_) will be presented in Section 5.0.

Supersonic-Hypersonic Tunnel Disturbances

Kovasznay (1953)(52) showed that the hot-wire
anemometer could be operated in a supersonic flow

*Noise levels measured with a microphone
(prms) can be converted to equivalent hot-wire mea-

sured u/Um vaiues.(55) At U, = 100 fps, a noise
level of 105 decibels is equivalent to a turbulence
level of 0.028% (u = 0.028 fps), u/h p/ypmM°°
0(0 .05 db - 3. 7)/ pM.




and the three disturbance modes (vorticity, entropy,

and sound) could be represented by the rms output of

a hot wire operated at different temperatures. He
conducted hot~wire experiments and showed that all
three disturbances could be present in supersonic
wind tunnels. The presence of entropy fluctuations
(temperature spottiness) was confirmed using mode
diagram analysis and from direct stilling chamber
and free-stream measurements using various types of
tunnel air-heating apparatus. A fluctuating pres-
sure field (sound waves) was generated using a weak
shock emanating from the leading edge of a sharp
flat plate. The oscillating flow field generated
by the weak waves produced the proper sound wave
mode diagram. Thus the experimental data obtained
at M_ = 1.7 and the analytical models developed by
Kovasznay supported his three-mode theory.

Morkovin (1957)(63) discussed the possible
sources of free-stream disturbance in supersonic

wind tunnels. Following Kovasznay,(sz) Morkovin

discussed the sources that could produce free-stream

disturbances: (1) vorticity fluctuations, (2) en-
tropy fluctuations, and (3) sound waver. He fur-
ther classified sound waves as: (1) radiation from
the wall turbulent boundary layer, (2) shimmering
Mach waves from wall roughness or waviness, (3) wall
vibrations, and (4) diffraction and scattering of
otherwise steady pressure gradients. Morkovin fur~
ther stated that any of the three principal modes

or any of the four specific sound sources could pro-

mote early transition if the disturbance levels

were high enough. Morkovin (1959)(6k) commented
further on wind tunnel disturbances. He discussed
ways to effectively reduce vorticity fluctuations
and entropy fluctuations by proper stilling chamber
design. However, he stated that the sound from the
turbulent boundary layer would probably be the
major disturbance. Morkovin stated that this type
of disturbance was very difficult to measure or to
predict theoretically. Furthermore, he stated that
seemingly little could be done to appreciably re-
duce its intensity level.

The following paragraphs will discuss in some
detail ‘the three possible disturbance modes in
supersonic wind tunnels.

Vorticity (turbulence fluctuations) (U) will
be greatly reduced by the nozzle contraction and
resulting flow expansion as shown in Fig. 8. The
effects of turbulence (W) on transition were in-
vestigated at Mach numbers from 1.7 to 4 by Laufer

and Marte (1955)(41) by varying the turbulence level
in the stilling chamber from 0.6 to 7%. 1In the low
Mach number flow, M < 2.5, the stilling chamber
level was found to have a strong effect on sharp-
cone boundary-layer-transition Reynolds numbers;
however, no significant effect was noted for

M 2 2.5. Similar experiments were conducted at

Mach 1.76 by Morkovin (1957)!b3) and no measurable
shift in flat-plate transition Reynolds number re-
sulted when the settling chamber turbulence was
raised from 0.7 to 4.6%. Van Driest and Boison
(1957) (1®) a1s0 showed that for M 2 2.5, the still-
ing chamber turbulence level had mo significant ef-
fect on sharp-cone transition Reynolds numbers.
These data are consistent with the results of
Uberoi( presented in Fig. 8. Vorticity fluctua-
tions measured at supersonic Mach numbers by Laufer
(1961)(65) and Donaldson (1971)(66) have shown that
at M_ = 4, §/U_ fluctuations in the test section

are only one tenth tle value of radiated noise

(EYpm). The measurements of Donaldson are shown in
Fig. 18. Therefore, it is concluded that for

M > 1.0, velocity fluctuations will have a negli-
gible effect on transition data in well-designed
wind tunnels.

Entropy fluctuations (temperature spotti-
ness),ﬁ?, that are present in the test section are
traceable to the settling chamber and farther up-
stream. In the test section, the temperature fluc-
tuations are related isentropically to those in the
stilling chamber. Effective means such as the use
of mixing sections and screens in the supply pas-
sage are used to reduce temperature to small levels
in supersonic tunnels as reported by Kovasznay

(1953)x52) Laufer (1961,(65) and Donaldson
(1971).(66) The measurements of Donaldson are pre-
sented in Fig. 18, and the low level of T/T_ in a
M, = 4 wind tunnél should be noted.

Limited studies of the effects of temperature
fluctuations on transition locations have been con-

-ducted by Brinich (1956) (67) and Ross (1973).(68)

Brinich changed T, from 52° to 176°F at M_= 3.1 and
found that the transition location on a flat plate
was essentially unchanged. Transition measurements
were conducted by Ross at M_ = 4 where T, was
varied from 295 to 434°K, keeping the unit Reynolds
number constant, and he found no appreciable change
in Re, data obtained with a hollow-cylinder model.
Thus, it is concluded that in well-designed super-
sonic wind tunnels (i.e., a stilling chamber
equipped with proper mixing screens), entropy fluc-
tuations will have a negligible effect on transi-
tion data. There is a possibility that in shock
tunnels, arc tunnels, and "combustion” type tunnels
that the temperature fluctuations (T) can affect
mean boundary-layer properties and transition. How-
ever, transition data from arc tunnels are con-
sistent with conventional tunnel data (see Ref. 50).

Pr.ssure fluctuations (P) (radiated aerody-

namic roise) is the third type of unsteady distur-

bance present in supersonic-hypersonic tunnels.
Radiated noise is generated by the turbulent bound-
ary layer on the nozzle and test section walls.
This disturbance is the major factor affecting tran-
sition in supersonic and hypersonic wind tunnels for

M2 2.5.

Laufer (1961)<L9) pointed out the startling
fact that fluctuations at the high Mach numbers
were 50 times greater than fluctuations measured in
a low turbulence subsonic wind tunnel.

Through the use of hot-wire measurements and
mode diagram analysis (e.g., Refs. 65 and 69)L
Laufer ruled out vorticity (U”) and entropy (T)
fluctuations as the cause of the measured hot-wire
fluctuations. Laufer also argued on physical
grounds that vorticity and entropy could be ruled
out. Since no temperature fluctuations had been
measured in the stilling chamber and since tempera-
ture fluctuations are convected along streamlines,
then if they are negligible in the stilling chamber
they will be negligible in the test section. He
also argued that the large contraction ratio in the
JPL tunnel (40 at M_=1.6 and 1,500 at M_ = 5)
diminished the stilling chamber velocity fluctua-
tions to such a low value that they could not be
the source of the disturbance (see Fig.8). Following



Kovasznay,(sz) Laufer provided the experimental data
(hot-wire mode designs) and the appropriate analyti-
cal expressions to demonstrate positively that the
measured fluctuating field was a pure sound field

in which the isentropic relationships between the
fluctuating quantities would hold.

Based on the results from his very thorough
experimental 1nvest1gat10n and supporting analytical
analysis, Laufer proved that the source of free-
stream disturbances was the sound field (aerodynamic
noise) emanating from the tunnel wall turbulent
boundary layer. Laufer pointed out, however, that
direct measurements of the sound field were not yet
available. Laufer further cautioned that stability
and transition studies in supersonic wind tunnels
would be handicapped by the presence of the sound
field.

The radiated noise levels as determined by
Laufer using hot-wire theoretical equations and mode
analysis of hot-wire measurements are presented in
Fig. 11. Laufer's classical work is considered to
have been the "star in the evening" that opened the
way for others to study the effects of noise on
wind tunnel data.

Continuing studies conducted in the JPL wind
tunnels on aerodynamic noise radiated by supersonic
turbulent boundary layers was reported in January
1961.(70) In Ref. 70, it was pointed out that pre-

vious JPL studies(sg) had shown that: (a) the an~
plitude of pressure fluctuations increased with
Mach number, (b) the intensity was uniform in the
flow field, and (c) the pressure field manifested a
certain directionality. Reference 70 presented re-
sults showing that the P/p_ fluctuations could be
correlated with the tunnel wall boundary-layer dis-
placement thickness (8%).

Kistler and Chen (1963)(71) reported on pres-
sure fluctuations that were mrde under a turbulent
boundary layer on the sidewalls of the JPL 18- by
20-in. supersonic wind tumnel at M_ = 1.3 to 5.0.
Two findings of particular importance were (1) the
normalized pressure fluctuat:on (P/7y,) on the sur-
face of a flat plate was found to correlate with
Reg, and (2) the tunnel wall root-mean-square (P)

of the pressure fluctuation was found to be propor-
tional to the tunnel wall turbulent skin friction
as shown in Fig. 12.

Laufer (1964)(72) discussed the radiation
field generated by a supersonic turbulent boundary
layer at Mach numbers from 1.5 to 5 and compared
the hot-wire results with those obtained by Kistler
and Chen(71) using microphones positioned in the
tunnel wall. 1In each of these tests, the wall and
free-stream pressure fluctuations were found to
scale with the mean wall shear for all Mach numbers,
as shown in Fig. 12. In addition, it was noted
that the intensity of the radiated pressure fluc-
tuations was an order of magnitude less than the
pressure fluctuations on the wall. By operating
the JPL 18- by 20-in. supersonic tunnel at low
pressures, the boundary layer was maintained lami-
nar on all four walls. Then by tripping the bound-
ary layer on one wall, Laufer showed that the in-
tensity of the radiated pressure fluctuations was
proportional to the size of the test section. For
example, radiation from one wall was approximately

equal to one~fourth the radiation measured (p')2

from four walls. Also, the measured values were
constant across the test section, once the hot
wire was one to two boundary-layer thicknesses
away from the wall.

Phillips (1960)(73) proposed a theory to de-
scribe the generation of sound by turbulence at

high Mach numbers. Laufer (1964),(72) in comment-
ing on Phillips' theory, noted that it is based on
the premise that the sound-generating mechanism
consists of a moving, spatially random, virtually
wavy wall formed by an eddy pattern that is con-
vected supersonically with respect to the free-
stream and is consistent with the principal fea-
tures of the sound field found in experiments.
Using this view, Laufer derived an expression for
the pressure fluctuation intensity that is a func-
tion of the mean skin-friction coefficient, wall
boundary-layer thickness, lengths that scale with
the boundary-layer thickness, convection speed,
angle of the radiated disturbance, and free-stream
Mach number. This theory was found to be in par-
tial agreement with experimental data at Mach num-

bers from 1.5 to 3.5 and considerably below experi-

mental data at Mach 5.

Williams reported in 1965(7*) that the sound
field in supersonic flows would be dominated by
eddy Mach waves. He stated that the efficiency of
radiation increases with Mach number as a result
of the turbulent "eddies" moving supersonically
with respect to the mean flow and creating Mach
waves. Also the waves were highly directional and
had their fronts aligned near the Mach angle as

pointed out by Phillips.(73)

Williams commented that Phillips (1960)(73)
was the first to make a thorough, theoretical attack
on the supersonic shear-radiated wave problem.

Williams(74) developed an analytical equation [Eq.
(1)] for estimating the Mach wave radiation from a
supersonic turbulent shear layer based on a descrip-
tion of the pressure fluctuation in the wall bound-
ary layer. Basic in his derivation was the assump~
tion that turbulent pressures scale with the wall
boundary-layer thickness.

M ) 3
5¢ o - D% an
272 1 M1 + 0.2 M2}°

(1)

{ﬂvl
é-! l g’Ul

The radiated noise intensities as computed by
Williams using Eq. (1) and the measured wall Py of
Kistler are shown in Fig. 15. Excellent agreement
exists between the computed values of Williams and
the free~stream measurements of Laufer.

Kendall (1970, 1975)(29¢3°) continued the out-
standing work begun by Laufer at JPL and published
additional experimental hot-wire data on wind tunnel
free-stream disturbances. Before beginning his flat-
plate boundary-layer stability-transition studies
(which were directed toward providing experimental

confirmation of Mack's stability theory(s)), Kendall
demonstrated that the fluctuations picked up by the
hot wire located in the laminar boundary layer on
the flat plate were the result of forcing by the
tunnel free-stream sound field that emanated from
the tunnel wall boundary. Data taken from Kendall
and publishied by Morkovin are shown in Fig. 13.
These data represent free-stream hot-wire measure-
ments obtained when the JPL tunnel wall boundary



layer was laminar and then turbulent. By operating
the JPL tunnel at low pressures, a laminar boundary
layer could be maintained on all four walls. Then
by tripping the flow on one wall and then rotating
the flat plate, Kendall showed the hot-wire response
was greatest when facing the turbulent wall, as
shown in Fig. l4. The data shown in Figs. 13 and 14
remove any doubts as to the intensity of the radi-
ated aerodynamic noise. Kendall also found that the
free-stream pressure fluctuations were amplified one
to two orders of magnitude by the laminar boundary
layer on a flat plate as shown in Fig. 15. This am-
plification has significance when comparing surface
microphone (P) and free-stream hot-wire (D) measure-
ments as will be discussed in Section 3.0.

Donaldson and Wallace (1971)(66) reported on
hot-wire anemometry measurements made in the AEDC-
VKF 12-in. supersonic wind tunnel to determine the
level of flow fluctuations in the test section free
stream. Donaldson and Wallace analyzed the hot-
wire data using the mode diagram concept of

Kovasznay(sz) and the data reduction technique of
Morkovin (i955)(71) following the assumption used

by Laufer, (69) Their results supported tne hypoth-
esis of Laufer that the disturbance was a fluccuat-
ing pressure field (aerodynamic noise) that radi-
ated from the tunnel wall boundary layer. The radi-
ated noise (rms pressure fluctuation) data measured
by Donaldson and Wallace are presented in Fig. 16

and compared with Laufer's data.(69) Note that both
sets of P data have been divided by two (i.e., p~2
divided by 4) to correspond to the radiation from
one wall only. The power spectral density for the
three unit Reynolds numbers investigated by Donald-

son (66) are shown in Fig. 17. The experimental
boundary-layer thickness (§) obtained from Ref. 76
was used to normalize the data. Using mode diagrams
along with the assumption that the fluctuating field
was a pure sound field, then the hot-wire rms volt-
age equation was used to estimate the fluctuating
quantities of pressure, mass flow density, tempera-
ture, velocity, and total temperature. Results of
these calculations taken from Ref. 66 are shown in
Fig. 18 (note the low level of /U and T/T distur-
bances as compared to P/p_ intensities).

Hypersonic free-stream disturbance measure-
ments have been reported by Demetriades (1975).(78) -

Donaldson (1976)(77) provided information on equip-
ment and techniques used in the hot-wire experi-
ments conducted at M_ = 6 and 8.

Wagner, Maddalon, Weinstein, and Henderson

(1970)(79’80) reported on the first of a long series
of investigations conducted at NASA/LRC* on the in-
fluence of free-stream disturbances on boundary-layer
transition at hypersonic speeds. uéiﬁg an approach
similar to Laufer's(69) they found that the mode
diagrams were linear with a positive slope for all
pressure levels investigated in the M = 20, 22-in.-
diam helium tunnel. Analysis of the mode diagrams
led to the conclusion that the disturbance was
radiated noise as described by Laufer. (69) They
found that when the tunnel flow was laminar (22-in.
tunnel at P_ < 3 mw/m°), the free-stream fluctua-

*National Aeronautics and Space Administration
(NASA) Langley Research Center (LRC), Hampton,
Virginia.

tions were lowest and when the nozzle flow was
transitional, they were highest (see Fig. 19).

Fischer and Wagner (1972)(81) reported on hot~
wire measurements conducted in the NASA-LRC 22-in.~
diam and 60-in.-diam helium tunnels at M, = 20 and
18, respectively. Using the mode diagram method of
analysis, they found the free-stream fluctuation
disturbances to be consistent with the radiated
noise hypothesis. Radiated noise disturbances mea~-
sured in two helium hypersonic tunnels, 22-in.-diam
(M_ = 20) and 60-in.-diam (M_ = 18), are shown in
Fig. 19. Selected spectra are shown in Fig. 20.

Further measurements by Stainback and Wagner

(1972)(82’83) showed that a pitot probe instrumented
with a flush-mounted pressure transducer could be
used to measure the free-stream pressure fluctua-
tions in hypersonic wind tunnels. The flush-mounted
pitot pressure transducer gave direct measurements
at radiated noise intensities (37pm) and were con-
sistent with the P/p_ value deduced from hot-wire
measurements. :

From the now classical experimental work of

(65,69,72) and the follow-on work of

Kendall(“’zg), Wagner, et al.’(80—82) Donaldson and
Wallace(68) and the theoretical work of Kovasznay.(sz)
Phillips, (73) and williams,(™) it is definitely
concluded that the dominant source of free-stream
disturbance in a well-designed supersonic-hypersonic
wind tunnel will be the pressure fluctuating field

(radiated noise) emanating from the tunnel wall tur-
bulent boundary layer.

Laufer

Harvey (1978)(“7) summarized published free-
stream disturbance intensities.n‘Harvey's correla-
tion of disturbance intensity (p) with Mach number
is shown in Fig. 21. He presented the free-stream
disturbance data in two basic nondimensionalized
forms, P/p_ versus M_ and B/q_ versus M_.

Dougherty (1980)(36) published a similar cor-
1- lation of P/q, data from several wind tunnels and

compared the results to flight measurements as shown
in Fig. 22. The similarity of the two correlations,
Figs. 21b and 22, are to be noted.

The significance of radiated noise distur-
bances on hypersonic boundary-layer properties has
been recognized by NASA and a major effort has been
underway since 1970 to design and construct a
M_ = 5 wind tunnel free from radiated noise distur—

bances. (33,84-88) 4 illustrated in Fig. 23.

The effects of turbulence W/U_ and radiated
noise disturbances (ﬁ/qm) on boundary-layer transi-
tion will be discussed in Section 3.0. Free-stream
disturbance can also have a significant effect on
other boundary-layer characteristics, i.e., Cp, 6,
H, etc. These experimental and analytical results
will not be discussed in this paper, and the reader
is referred to Refs. 89 through 97.

3.0 Effects of Free-Stream Disturbance Levels on
Transition

The free-stream disturbance modes and inten-
sity levels that can be present in wind tunnels



were discussed in Section 2.0. Results presented in
this section will show that free-stream disturbance
intensities have a dominating effect on the transi-
tion process as reflected in the experimentally mea-
sured boundary-layer tranmsition Reynolds number. As
was shown in Fig. 4, the type disturbance that will
be present depends on the physics of the flow as
reflected in wind tunnel type and Mach number range.
The following table identifies the type disturbances
that will be addressed in this section.

Type Type
Tunnel Mg Range Disturbance Source
Subsonic 0t00.3 Turbulence ()  Stilling Chamber

Acoustic () Standing Waves (Organ
Pipe Resonance)

Traveling Waves
{Fan Noise,Sound
Generator)

Porous (Holes) Wall
(Edge Tone Discrete
Frequency)

Siotted Wall
(Resonance)

Wall Turbulent
Boundary Layers

Transonic 0.4t 1.5 Acoustic {p)

Supersonic-  ~2to~20  Radiated
Hypersonic Sound {p)

Subsounic

The classical transition-noise data published

by Schubauer-Skramstad (1947)(8) are presented in
Fig. 24. These data showed that boundary-layer
transition Reynolds number could be correlated direct-
ly with free-stream disturbance levels (ﬁ?Um). Data

obtained by Spangler and Wells (1968) (%) are also
included in Fig. 24 and show a strong dependence of
Rey on frequency at the low disturbance levels
(?.f/Um < 0.3%). Based on Tollmien-Schlichting linear

stability theory,(113) the significant variation of
Rey within the frequency range tested is to be ex-
pected at the test conditions used. It should be
noted that for pure turbulence (i.e., true random
fluctuations), the disturbance spectra will not
exhibit discrete frequencies, and the correlation of
Rer with intensity level, without exhibiting a de-
pendence on frequency, is to be expected.

Transonic Wind Tunnels

Dougherty and Steinle 0974)(35)peformed and/or
coordinated extensive measurements of free-stream dis-
turbance levels and corresponding transition locations
on a 5-deg, half-angle cone in 22 wind tunnels lo-
cated in the USA and Western Europe. Results from
four of these tunnels are shown in Figs. 25 through
28. Data taken in the AEDC-PWT 16- by 16-ft tunmel
are presented in Fig. 25. The primary free-stream
disturbance was acoustic noise produced by edge~
tone resonance generated by the porous (60-deg in-
clined holes) walls as discussed in Section 2.0. As
shown in Fig. 25, there was "fair" correlation of
Rey with B/q_ values. Note that with the holes
taped the lowest noise level and highest Re; values
were obtained.

Presented in Fig. 26 are data from the NASA-
ARC 8-ft slotted wall tumnel. The correlation of
Rey with P/q_ is fairly good. The acoustic noise
disturbance was generated by a combination of dis-

crete frequencies from slot resonance, the fan
harmonics, and broad-band noise, as discussed in
Ref. 35.

Transition data from the NASA-ARC 11-ft wind
tunnel, Fig. 27, exhibited a fairly good correlation
with disturbance intensity. The acoustic distur-
bance was dominated by two discrete acoustic fre-
quencies generated by the test section wall slots.
The variation in a ’ﬁ'/q°° with axial location was the
result of increased fan noise as the model moved
aft. The lowest acoustic noise levels and highest
transition Ret values were measured by Dougherty(35)
in the NASA-LRC 16-ft slotted wall tunnel. The
spectra were generally broad~-band noise except for
discrete frequency disturbances generated by the
fan at M_ = 0.3 to 0.4. A good correlation of Rey
with $/q_ is seen to exist.

Dougherty and Fisher (1980)(36 ) continued their
investigation of transition and free-stream distur-—
bances to include extensive flight experiments. The
5-deg, half-angle cone used in his tunnel experiments
was flown mounted from the nose of an F-15 aircraft.
(Fig. 29). The cone Re. values and noise intensi-
ties measured in flight are presented in Figs. 30
and 31. Of particular significance is the fact that
a measurable disturbance level was present in flight,
and there appears to be a direct correspondence of
Rey (Fig. 31) with the /g, levels (Fig. 30).

A general summary of free-stream disturbance
levels (P/q,) measured in transonic ‘and supersonic
wind tunnels and flight is shown in Figs. 32 and 33.
By making direct comparisons of Re; with P/q_ levels,
a fairly good correlation exists over a very wide
Mach number range (i.e., as the disturbance level
goes down, Re, goes up and vice versa.)

Supersonic-Hypersonic Tunnels

Pate and Schueler(1967)(26) conducted the first
experiments that provided positive proof that the radi-
ated noise from a tunnel wall turbulent boundary
would significantly and adversely affect model
boundary-lay :r-transition locaticn. Details of
these experim~nts can be found ir Refs. 26, 27, and
50. Results from these studies are presented in
Figs. 34 through 36. The objective of the experi-
ment was to expose a hollow-cylinder "planar' transi-
tion model and subsequently a flat-plate "planar”
microphone model to various. levels of radiated
noise. The approach was to control the state of
the boundary layer (laminar or turbulent) on the
inside wall of the long shroud over a range of test
conditions (i.e., various Mach numbers and unit
Reynolds numbers).

The tests were conducted in the AEDC-VKF Tun-
nel A 40- by 40-in. supersonic wind tunnel at
M =3, 4, and 5. Baseline data were obtained in
Tunnel A with the shroud removed. It should be
noted in Figs. 34a and b that the transition Reyn-
olds number increased as the unit Reynolds number
increased with the accompanying decrease in the
radiated noise disturbance level, P/q . By in-
creasing the unit Reynolds number ang7or by placing
a boundary-layer trip at the shroud leading edge
(see Refs. 26 and 50 for details), the shroud inner
wall boundary-layer-transition location (i.e.,
léngth of turbulent flow) could be positioned from
very near the shroud leading edge to downstream of
the flat-plate and hollow-cylinder models. With



the shroud installed and at a test condition of

M_ = 3.0 and low unit Reynolds numbers (Re/in. £

0.1 x 106), the boundary layer on the shroud inner
wall was maintained laminar. Consequently, no
radiated noise was generated and the pressure dis-
turbance Fqu was lower than the baseline data, i.e.,
shroud removed. This also suggests that the shroud
provided some shielding effect from the tunnel wall
noise.

As the boundary layer on the shroud inner wall
changed from laminar to turbulent, the transition
Reynolds numbers decreased (Fig. 34c¢) and the radi-
ated noise levels increased (Fig. 34d). It should
be noted that the ‘test was repeated and the noise
measurements duplicated in the second test program.

Fourier analysis of the three data points

identified in Fig. 34d as (:) . (:) , and (:) are
presented in Fig. 35. The spectra data follow the
same qualitative trend as exhibited by the overall
rms (P/q_) data presented in Fig. 34d. The pressure
fluctuations at low frequencies were quite large.
Two spikes appeared in all these sets of data at
approximately 7 and 14 kHz. These were probably
mechanically induced vibrational effects.

Similar Re; and B/q_ results were obtained at
M =4 and 5. The M_ = 5 data are presented in
Fig. 36 and the transition Reynolds number is seen
to also have a direct inverse correlation with the
measured radiated noise levels (p/q.).

The shroud experiments of Pate and Schueler(ZS)
provided positive proof that the boundary-layer
transition location and transition Reynolds numbers
on simple flat-plate models will be dominated by
aerodynamic noise that radiates from the tunnel wall
turbulent boundary layer.

Pate (1967, 1971, and 1977) (26:27550) jpyeqei-
gated the effects of radiated noise (p) on boundary-
layey tranmsition using a hollow-cylinder model and
a 5-deg, half-angle sharp-cone model in various wind
tunnels ranging in size from 1 ft to 16 ft.

The transition Reynolds number measured in
the same two tunnels on the sharp-leading-edge
hollow-cylinder model and 5-deg half-angle sharp
cone are shown in Fig. 37. The transition Reynolds
number data measured in the 40-in. tunnel were sig-
nificantly higher than the 12-in. tunnel results.
Of particular significance is the fact that the in-
crease in Re; between the two tunnels for both the
hollow cylinder and sharp cone were about the same.
This suggests that radiated noise effects on the
transition process for simple geometries will be
about the same.

The microphone data by Pate(so) obtained at

M_= 4 are compared with data measured at

M_ = 4 by Donaldson and Wallace(66) using the same
model. There are several points to note in this
figure: (1) at Re/in. = 0.025 x 106, the Tunnel D
p/q, values were very low. This corresponds to a
laminar boundary layer on the tunnel wall as deter-
mined from boundary-layer data published in Ref. 72;
(2) at Re/in. = 0.05 x 109, the wall boundary layer
was estimated to be transitional and the measured
high peak is in agreement with the findings of

Vrebalovich (1960),(9a> Laufer (1961),(69) and
Wagner, et al. (1969);(80) (3) the microphone 'fp’/qm

measurements in Tunnel D were significantly higher
than the free-stream hot-wire data. These results are

as expected, if the findings of Kendall (1970)(29)
are considered. Using a hot wire, Kendall found
that the free-stream disturbance (p) was amplified
by the laminar boundary layer on a flat plate by as
much as a factor of one to two orders of magnitude,
as previously shown in Fig. 15. The data presented
in Fig. 38 are consistent with the results of
Kendall; and (4) the most significant result ob-
tained from Fig. 38 is that the Tunnel D (12 in.)
p/q,, data, flat plate and hot wire, are signifi-
cantly higher than the Tunnel A (40 in.) data. Cor-
respondingly, Tunnel D Re; data are significantly
lower than the Tunnel A data, Fig. 37. These re-
sults are in good agreement with the results in
Figs. 34 and 36, the higher the free-stream distur-
bance level (i.e., the noise intensity), the lower
the transition Reynolds number.

Power spectral density plots as measured using
the flat-plate microphone model in Tunnel D by

Donaldson and Wallace(66) are shown in Fig. 39.
L.naldson and Wallace concluded that the peaks must
be mechanically introduced by the microphone or
mounting system since no such peaks appeared in the
free-stream hot-wire data.

Recent data published by Beckwith (1975)(8u)
support the present assumption that a microphone
mounted on the surface of a model will measure sig-
nificantly higher pressure fluctuation intensities
than a hot-wire or flush-mounted microphone-pitot
tube positioned in the free stream at certain
supersonic-hypersonic Mach numbers. Presented in
Fig. 40 are Beckwith's data taken from Ref. 84.
There are two significant factors to note: (1) Pres-
sure~fluctuating rms levels measured on the surface
of a model may not be strongly dependent on the
model boundary layer provided the model boandary
layer is fully turbulent or fully laminar, as shown
in Fig. 40. This conclusion was also reached by
Dougherty(35) for low supersonic and transonic test
(onditions; and (2) the model microphones measured
a significantly higher pressure fluctuation inten-
sity, Fig. 40b. This result supports statement
three above. Beckwith also concluded that the am-
plification of the free-stream radiated noise by
the laminar boundary layer as reported by

Mack(5) and Kendall(zg) might be the reason.

A paper by Bergstrom (1972)(99) compared wind
tunnel free-stream disturbance measurements from
several sources and commented on the large scatter
in the data. The data used for the comparison in-
cluded free-stream hot-wire and model surface micro-
phone data. Bergstrom noted that the model surface
microphone data were significantly higher than the
hot-wire data and concluded that additional studies
need to be directed toward resolving this apparent
discrepancy. It is proposed that a significant
part of the differences in the data are the result
of the free-stream radiated noise disturbance being
amplified by the model laminar boundary layer and
producing the higher microphone rms levels. Other
possibilities are mechanical and microphone
resonance frequencies that are not properly filtered.

Wagner, Maddalon, and Weinstein (1969)(99)\~.
ported on one of the most fundamental and informa-
tive of the NASA-LRC transition studies. They used
a M_= 20 helium flow tunnel (test section diam-
eter = 20 in.) to investipate radiated aerodynamic



noise disturbances in the tunnel free-stream when
the tunnel wall boundary changed from laminar to
turbulent. They used a hot-wire positioned in the
free stream to determine the type and magnitude of
the free-stream disturbances using the Kovasznay-
type model diagram and the analysis developed by
Laufer as discussed in Section 2.0. Presented in
Fig. 41 are the mms pressure fluctuations measured
in the test section free stream (Station 139) of the
M_ = 20 helium tunnel. Note that below a unit
Reynolds number of =0.15 x 106, there was a sharp
drop in the P/p_ data, and this was the result of a
laminar boundary developing on the tunnel wall.(80)
Boundary-layer transitirn Reynolds numbers were mea-
sured on a sharp-leading edge, 10-deg inclined wedge
positioned in the test section, as shown in Fig. 4la.
Included in Fig. 41b are the measured free-stream
radiated pressure fluctuation data. Although there
were no transition data obtained below (Re/in.) <
0.13 x 106 (transition off the back of the model),
it can be seen that the changes in Reg¢ data varied
inversely with the $/q_ values.

The shroud results obtained by Pate and
Schuzler (1967),(26) presented in Figs. 34 and 36,
and the NASA studies (1969),(80) given in Fig. 41
produced essentially the same results using com-
pletely independent methods.

Fischer and Waguer (1972)(81) extended the
NASA-LRC transition studies to include the study of
transition on sharp cones and the measurement of the
free-stream radiated noise levels in two helium tun-
nels (M, = 20, 22-in.-diam tunnel and the M_ = 18,
60-in.-diam tunnel). These data are presented in
Fig. 42. The transition Reynolds numbers found
varied inversely with the measured noise levels as
reported earlier in Ref. 80 and provided additional
confirmation of the strong effects of radiated noise
on transition.

Additional summary discussion on the many NASA
transition-noise experiments can be found in Refs.
33 and 50.

As evident from results presented in this sec-
tion, the radiated aerodynamic noise (r) inherent in
conventional supersonic-hypersonic wind tunnels
(M_ 2 3) will have a severe adverse effect (if not
the dominating effect) on boundary-layer transition
on simple geometries, i.e., flat plates and sharp
cones at zero incidence.

4.0 vVvariation of Supersnnic-Hypersonic Transition
Reynolds Number with Tunnel Size

It has been established in Sections 2.0 and
3.0 that free-stream disturbances present in sub-
sonic, transonic, and supersonic-hypersonic wind
tunnels will have a dominating effect on the transi-
tion process as reflected in the experimentally mea-
sured boundary-layer transition Reynolds number
(Re¢). It was also shown that Re; values could be
correlated with disturbance levels (3/U_, B/p,) .
The subsonic-transonic disturbance modes (turbu-
lence, TJ"/Um and acoustic sound, P/q ) are related
to inlet flow conditions, stilling chamber design,
porous/slotted configurations, fan-drive and
diffuser noise. These sources of disturbances are
unique to each facility. Consequently, the distur-
bance levels must be obtained by direct measurement
as discussed in Section 2.0. The radiated aerodynamic
noise disturbance mode present in conventional

supersonic-hypersonic tunnels is generated by the
tunnel wall turbulent boundary layer. This is a
unique characteristic that allows the radiated noise
level to be related to tunnel size and flow condi-
tion.

The direct relationship and variation of Re;
with tunnel size was first demonstrated by Pate and

Schueler (1967)(26) gor M =3 to 5. These studies
were part of their extensive research program con~
ducted to confirm the correlation of Rey with radi-
ated noise. The systematic variation of Rey with
tunnel size was later confirmed by additional and
independent studies in the USA, Russia, England,
and The Netherlands.

Results presented in Figs. 34 and 36 (the
shroud experiments by Pate) provided conclusive
evidence that radiated noise can dominate the tran-
sition process. Free-stream pressure fluctuation
data measured in the AEDC-VKF Tunnel A (40- by 40-
in. test section) and the AEDC-VKF Tunnel D (12- by
12-in. test section) presented in Figs. 37 and 38
have shown that higher noise levels and lower
transition Reynolds numbers are associated with
small tunnels. Furthermore, the radiated noise in~
tensities can be directly related to th~ properties
(tw, 6%) of the turbulent boundary lavir on the tun-
nel walls (Fig. 12 and Ref. 70).

Pate (1967, 1971, 1977)(25’27’50) reported on
extensive experimental transition programs con-
ducted to verify that the transition location was
dependent on tunnel size (or radiated noise levels).
The location of transition was measured in five dif-
ferent AEDC supersonic-hypersonic wind tunnels using
planar (flat-plate and hollow-cylinder) and sharp-
cone models as described in Refs. 26, 27, and 50.
Three of these tunnels are shown in Fig. 43.

Transition Reynolds numbers measured by Pate

and Schueler (1967)(?6) at M_ = 3.0 on hollow-
cylinder models in three AEDC wind tunnels having
test sections ranging in size from 1 to 16 ft
are presented in Fig. 44. Sharp-cone transi-

tion data obtained by Pate(27) at M, = 4.0 in two
different sizes of AEDC wind tunnels are also
presented. The large increase in transition Reyn-
olds numbers with increasing tunnel size is attrib-
uted to the decrease in radiated aerodynamic noise
levels as discussed in Sections 2.0 and 3.0. De-
tails of the experiments can be found in Refs. 26,
27, and 50.

Ross (1974)(100) conducted an experimental
transition program in two supersonic blowdown wind
tunnels (Netherlands). The transition model was the
2-in.-diam hollow-cylinder model used by LaGraff
(1970).4101)  he transition location was determined
using a surface pitot probe. Ross found a large
variation in Re, with tunnel size as shown in Fig.
45. These results were in agreement with the find-
ings of Pate and Schueler(26) and provided inde-
pendent confirmation of the strong variation of Rey
data with tunnel size.

Studies were conducted in the USSR by

Struminskiy, Kharitonov, and Chernykh (1972)(102)
to establish if unit Reynolds number effects and
tunnel size effects at M = 3 and 4 as reported by

Pate and Schueler(26) existed at higher unit




Reynolds numbers. Two wind tunnels were used (Tun-
nel T-313, 23.6 by 23.6 in., and Tunnel T-325, 7.9
by 7.9 in. Transition locations were determined
using the surface pitot probe end-of-transition
technique (see Ref. 50). Values of Re; for an ef-
fective zero leading-edge bluntness was obtained by
extrapolation (see Ref. 50). Presented in Fig. 46
are the basi¢ transition data from Ref. 102. The
significant increase in Rey with increasing tunnel
size should be noted. An attempt was made in Ref.
102 to correlate the Rey data for a given Mach num-
ber using a Reynolds number based on the test sec-
tion diameter. For the M_ = 3 data, fair agreement
was obtained by correlating Rey with Re, p.

In 1975, Kharitonov and Chernykh(1°3) extended
their research to include pressure fluctuation mea-
surements on the walls of Tunnels T-325 and T-313
at M_ = 3 and 4. Their studies established a change
in Re; levels with a change in acoustic levels.

They conciuded that the change in Ret with a change
in uni: Reynolds number (Re/in.) was the result of
the acoustic perturbations (aerodynamic noise) pres-
ent in the test section. They reasoned that the
scale of turbulence was related to t%e tunnel wall
turbulent boundary-layer displacement thickness.
Using the theory that Re; was related to the inten-
sity (@W/u), the scale of turbulence (% = &%), and a
characteristic length (L = d), they obtained a cor-
relation of Rey = F (W u)(L/2)1/M for n = 0.25 and
M = 2.5 to 6. The scatter for flat-plate transi-
tion data obtained in six wind tunnels was *15%.
They used their data and data from AEDC-VKF Tunnels
A and Dand AEDC-PWT Tunnel 16S as taken from Ref. 26.

LaGraff (1970)(101) reported on a series of
supersonic transition studies conducted using a
hollow-cylinder model. He stated that as a result
of the paper by Pate and Schueler (1967)(28) 4 test
program was initiated at Oxford University, England
to investigate the dependence of transition on
facility-generated disturbances. Four research
groups from Great Britain and Sweden participated in
the study as listed in Table 4.(°%) The two sets of
data that can be compared directly are the Oxford
University data for M_ = 6.95 and the Aerodynamic
Research Institute of Sweden data for M_=7.15.
These gun tunnel data are presented in Fig. 47 and
show the effects of tunnel size similar to the re-
sults shown in Figs. 45 through 46. Results from
two different types of tunnels are presented in Fig.
47 and provide added confirmation of the increase in
Re, with increasing tunnel size.

Bergstrom, et al. analyzed three sets of gun

tunnel flat-plate transition data (1971)(10“) in
addition to his transition studies conducted at
M = 7.0 in the Loughborough University of Technol-

dgy gun tunnel. Using the Pate-Schueler aerodynamic

noise correlation(26) developed for conventional
wind tunnels (see Section 4.0), he correlated gun
tunnel Rey data and concluded that transition data

obtained in hypersonic gun tunnels were influenced
essentially by the aerodynamic noise present in the
test section. He further concluded that many of
the discrepancies in gun tunnel transition data
could be explained on this basis. The transition
data from the four gun tunnels displayed good over-
all correlation with aerodynamic noise and tunnel
size parameters according to the method of Pate and

Schueler. (26) For a given Mach number, Bergstrom

et a1.(10%) also found that transition Reynolds
numbers correlated very well against the free~stream
rms pressure fluctuations ratioed to free-stream
static (Ppq/P,) as calculated using the method of

Williams and Maidanik(’") (Eq. 1) for a wide
range of tunnel sizes.

Composite plots comparing the variation of
Rey with tunnel size as measured by different re-
searchers in several countries are presented in
Figs. 48 through 52.

Transition Reynolds number data measured at
M, = 3 on flat plates and hollow cylinders in six
different sizes of wind tunnels having test section
sizes varying from 7.9 to 16 ft are shown in Fig.
48. The systematic variation with tunnel size and
unit Reynolds number should be noted. Note also
that the long shroud "simulated tunnel" data from
Fig. 34 falls at about the expected location.

Similar trends with tunnel size are exhibited
by two sets of key data obtained at M_ = 8 in the
AEDC 50-in. and the NASA/LRC 18.3-in. tunnels,

Fig. 49.

Several sets of flat-plate and sharp-cone Reg
data (M_ = 3) are presented in Fig. 50 and show a
systematic variation with tunnel size when presented
as a function of nozzle length. Presented in Figs.
51 and 52 are summary plots of cone and planar Re,
data plotted as a function of tunnel size (circum-
ference). The tumnel test secticn sizes varied
from 5.0 to 50 in. in height for t..z2 sharp-cone ex-
periments and from 7.9 in. to 16 ft for the planar
model experiments. The variations in Re; with tun-
nel size are very similar for both planar and
sharp-cone models for Mach numbers 3, 5, and 8.

The results presented in this section have
shown conclusively that supersonic-hypersonic
(M_ = 3) transition Reynolds number measured on
cones and planar models in conventional wind tunnels
will increase with increasing tunnel size in a sys-
.2matic and monatonic manner.

5.0 Boundary-Layer Transition Correlations
and Prediction Techniques

Because of the absence of a readily available,
easily used, and successful theoretical transition
model, researchers and designers have, from neces-
sity, pursued the traditional path of attempting to
develop data correlations that allow reasonable
estimates to be made. These correlations have been
and still are the basis on which most transition
locations on aircraft and missiles are estimated
and wind tunnel and flight test programs are
planned.

Various published techniques will be reviewed
in this section. Special emphasis will be devoted
to the supersonic-hypersonic Rey -radiated noise
correlations.

Methods that have been used for predicting
boundary-layer transition can be grouped into five
general classifications:

1. Data correlations based on local flow conditions
and observed trends in experimental data.

2. Three-dimensional (cross-flow) instability
methods.



3. Linear stability theory with specified amplifi-
cation rates.

4. Kinetic energy of turbulence approach.

5. Correlations and semi-empirical methods based
on free-stream disturbance intensities.

(NOTE: Methods 3, 4, and 5 incorporate free-stream
disturbance intensities.)

Reviews of smooth body transition prediction
methods have been given by Gazley (1953),(9) Deem
et al. (1965),3?) Morkovin (1969),(?) Granville
(1974),(“0) Kistler (1971),(108) Shamroth and
McDonald (1972),(*9) Tetervin (1973),(199) spith
and Gamberoni (1956),(*!) Reshotko (1969), (110)
Hanner and Schmitt (1970),(111) Michel (1973),(89)
Hall and Gibbings (1972),(*8) and Mack (1977)(%6)

White (1974)(112) 43¢0 gives a good review of many
of the older well-~known methods and some of the

more recent methods. Of course, the interested per-
son will want to read the sections on stability and
transition by Schlicb:ing.(lls)

Linear stability theory and the kinetic energy
of turbulence approach offers perhaps the best pos-
sibility of eventually modeling and predicting the
onset of the boundary-layer transition, even though
to date they have not yet been very successful.
However, these methods will probably not be widely

-used (at least not for many years) by the design
engineer, wind tunnel experimentalists, or the aero-
nautical engineer involved in trying to predict the
occurrence of transition on his aircraft or missile
of interest. The linear stability and kinetic en-
ergy theories are very sophisticated, both in the
concepts involved and the numerical and analytical
mathematics required. Years of experience are re-
quired in developing and using the complicated com~
puter programs. Vehicle configurations, particular-
ly in the preliminary design stage, often change
faster than the theory can be modified and/or the
geometry is too complicated to be modeled.

Semi-empirical methods and correlations based
on physical concepts and/or free-stream disturbance
intensities have, to date, been the most successful
in correlating and predicting boundary-layer transi-
tion at subsonic-transonic-supersonic Mach numbers.

Since it is not the purpose of this paper to
present a critical review of the many published
papers and methods, only a few of the techniques
will be presented to illustrate types of methods,
the correlation parameters used, and some of the
typical results cobtained.

As might be expected, special attention will
be devoted to those transition correlation tech-
niques based on the theory of free-stream distur-
bance domination.

6.0 Data Correlations Based on Local Flow
Conditions and Observed Trends in
Experimental Data

These correlations can be divided into two
general areas:
body flows.

(1) tripped flows and (2) smooth

Tripped Flow

Results from three of these methods are brief-
ly discussed to illustrate the correlation param~
eters used.

At subsonic speeds, Dryden (1953)(15) success-—
fully correlated the effectiveness of ‘two-dimen-
sional elements (wires) and cylindrical roughness
elements in promoting early boundary-layer transi-~
tion. This correlation is shown in Fig. 53.

Van Driest, et al. (1960-1968)(18,11%,115)
conducted a systematic experimental and analytical
program and successfully correlated the location of
the "effective" transition location for spherical
roughness heights, and the effects of roughness in
conjunction with wall cooling and Mach number
0 < M < 4) on flat plates and sharp cones. The
resulting correlation is presented in Fig. 54.

The trip correlation developed by Potter and

Whitfield (1962,1969)(23:116) 55 ¢houn in Fig. 55
for flat plates and sharp cones. This trip correla~
tion is, to this author's knowledge, the most com-
prehensive of any published to date and incorporates
the -.ffects of trip size, wall cooling, and local
Mach number (0 < Mg < 10). This correlation also
predicts the trip size required to move transition
from its smooth body location to the trip location
or any point in between.

Other extensive experimental studies using
different trip geometries at hypersonic conditions
have been performed and reported by Whitehead
(1969).(22)

The problem of roughness effects on transition
is always a current problem, as illustrated by wind

tunnel tests conducted by Pate and Eaves (1973)(117)

"and Stalmach and Goodwich (1976) (118) to establish

the effective roughness of the thermal insulating
tiles on the space shuttle orbiter.

An cbvious question relative to "tripped"
transition is whether the transition location will
be trip dominated or whether the free-stream distur-
bance level will be an influencing factor. None of
the trip correlations discussed included free-stream,
disturbance levels in the correlation.

Research was conducted by Pate (1971,

1978)(28,50) g determine if free-stream distur-
bance levels were a significant factor in tripped
transition results. The model was exposed to sig-
nificantly different levels of radiated free-stream
disturbance intensities by conducting .ests in the
AEDC-VKF 12-in. and 40-in. supersonic tunmnels (see
Figs. 37 and 38).

Presented in Fig. 56 are comparisons of the
12-in. and 40-in. tunnel results obtained using the
identical cone model under identical M and
(Re/in.), conditions. As discussed in Section 3.0
(Fig. 37), the smooth-wall transition locations are
significantly higher in the 40-in. tunpel because
the radiated noise levels are significantly lower
as shown in Fig. 38.



It is seen that the "effective point" location
as defined by van Driest and Blumer(18) was essen-
tially the same in both tunnels. This indicates
that when the transition process is trip dominated,
"i.e., X; is at the effective points, then the in-
fluence of free-stream disturbances can be con-
sidered negligible." Therefore, the method of van
Driest (and presumably the method of Dryden) can be
used "with reasonable confidence" without having to
consider the smooth-body transition location or the
tunnel disturbance level.

The method of Potter and Whitfield(23,116) re-
quires the smooth-body transition Reynolds number as
input data. Consequently, the tunnel turbulence
level must be considered. Results computed using
the method of Potter and Whitfield and the proper
smooth-wall transition location are shown in Fig.
56a. Reasonable agreement is seen to exist.

The studies by Pate (1971)(28) have verified
that the "effective point" location defined by van
Driest(17) isg trip disturbance dominated and essen-
tially independent of the tunnel disturbance levels
=t supersonic speeds.

Smooth-Body Flows

In correlations of transition Reynolds numbers
on smooth-wall, two-dimensional models (flat plates
" or hollow cylinders) at supersonic speeds the ef-
fects of Mach number, leading~edge bluntness, wall
cooling, unit Reynolds number, and leading-edge
sweep have been considered. The studies by Deem,

et al. (1965)(39) considered all five of these
parameters and is perhaps the most extensive in
scope of these types of correlations. Their corre-
lation did not include the effects of free-stream
disturbance and consequently often provides only
qualitative predictions. 1In Ref. 119 the analytical
expressions developed by Deem et al. have been pre-
sented in graphical form for rapidly estimating the
transition location for flat-plate wind tunnel
models with supersonic leading edges at zero angle
of attack. Deem et al. also compared the estimated
Rer for each data point used in developing their
correlation, and the result is shown in Fig. 57.
The standard deviation was 33%.

Beckwith and Bertram (1972)(33) developed
supersonic-hypersonic transition correlations using
boundary~-layer parameters such as Regy and local
flow conditions M, and h, and the wall parameter h,-
Their correlations were developed using a digital
computer to define functional relationships and cor-
responding coefficients that produced the smallest
standard deviation . An example of one correla-
tion developed for wind tunnel data is presented in
Fig. 58. Correlations for ballistic range and free-
flight data were also developed and are published in
Ref. 33. The results presented in Ref. 33 are the
most comprehensive published to date and represent
several years of effort by researchers at the NASA
Langley Research Center. The standard deviation
for wind tunnel sharp-cone transition data is be-
tween 29 and 41%, as illustrated in Fig. 58. These
correlations can only be judged to be fair in their
“ability to provide reasonable predictions of tran-
sition Reynolds numbers.

Fehrman and Masek (1972)(38) attempted to cor-
relate high Mach number transition Reynolds number
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measured on the windward centerline of the NASA
orbiter at angle of attack using Reg, My, and the
local unit Reynolds number (Rep/ft) as the corre-
lating parameters. The correlation from Ref. 38 is
shown in Fig. 59, and the scatter in the correlation
of the data is seen to be quite large.

Other correlation methods that account for
nose bluntness and severe nose roughness on blunted-
cone geometry have been reported by Stetson
(1979),(37) Boudreau (1978),(129) and Reda

(1979) . (121)

A summary of transition research conducted at
AEDC is given in Ref. 122,

In general, it can be stated that the "tripped
methods" have been successfully and widely used.
The smooth-body fully empirical methods have filled
a void and fulfilled a need, but their general ap-
plications and usefulness have been limited.

Three-Dimensional-Crossflow Instability Method

The laminar boundary-layer profile in a three-
dimensional viscous flow, such as a swept wing or
cylinder, will have a twisted profile that can be
resolved into tanmgential (u) and normal (w) velocity
components as illustrated in Fig. 60. Owen and

Randall (1952)(1*) found that the instantaneous jump
of transition from the trailing edge to near the
leading edge of subsonic swept wings could be cor-
related with a critical crossflow Reynolds number.
This critical crossflow Reynolds number is a func-
tion of the maximum crossflow velocity (normal com-
ponent) and a thickness defined as nine-tenths the
boundary~layer thickness as shown in Fig. 60. This
type of transition process can be related physically
to the instability of the boundary layer as a result
of the inflection point in the crossflow profile.
The crossflow concept was investigated initially at

subsonic speeds by Owen and Randall,(lq) at super-
sonic conditions by Chapman (1961) (24) using swept

cylinders, and by Pate (1965)(25) using supersonic
swept wings.

Adams (1973)(“3) extended this concpt to super-
sonic sharp cones at incidence. Adams and Martin-

dale(4) explained high heating rates on the NASA
space shuttle at incidence using the crossflow con-
cept.

This technique is classified as semi-empirical
since it requires a theoretical solution of the
three-dimensional laminar boundary, and transition
is then predicted to occur when the crossflow Reyn-
olds number (x) reaches a value of 150 to 175.

This empirical constant appears to hold for sub-
sonic and supersonic flow regimes and for all types
of geometries, as shown by the correlation pre-
sented in Fig. 60.

Free-stream disturbances will probably have a
negligible effect on the crossflow criteria, since
mean flow laminar boundary-layer velocity profiles
are not strongly affected (at least not to the first
order) by free-stream disturbances.



Linear Stability Theory with Specified
Amplification Rates

The stability of fluid flow was first con-
sidered by Raleigh for incompressible, inviscid

flows.(llz’lla) He found that an inflection point
in the velocity profile was a necessary requirement
for instabilities to occur. Prandtl extended

linear stability theory to include the destabiliz-

ing effects of the fluid viscosity.(112’113) A de-
tailed theory of stability for incompressible, vis-—
cous flows was developed by Tollmien and

Schlichting,(IIS) The confirmation of the existence
of the Tollmien-Schlichting type waves was provided
by the classical experiments of Schubauer and

Skramstad (1947).(8) Extension of the linear sta-
bility theory to compressible flows was accomplished

by Lees and Lin (1946).(13“) Experimental verifi-
cation of this theory was provided by Laufer and

Vrebalovich (1960).(135) Mack (1969,1975)(5546)
extended linear stability theory to higher Mach num-
bers, identified and studied the presence of higher
modes* of disturbance, and showed that the de-
stabilizing effects of viscosity begin to decrease

Kendall (1970,1975) (*230) provided
experimental verification for many of Mack's theo-
retical predictions. One particularly significant
finding of the Mack-Kendall research at JPL was the
prediction and experimental confirmation that free-
stream radiated noise disturbance, independent of a
critical frequency, is amplified by the laminar
boundary layer. This amplification begins at

the leading edge of a flat plate and continues
downstream until transition occurs. Mack-Kendall
showed that a laminar boundary layer at M =3

and 4 can amplify the free-stream disturbance by an
order of magnitude as shown in Fig. 15. The fact
that all free-stream disturbances are amplified and
can be an order of magnitude higher in the laminar
boundary layer than in the free stream were dis-
cussed in Section 2.0 with regard to surface micro-
phone measurements.

above M =~ 3,
(-]

The use of linear sta-liity theory to predict
the onset of boundary-layer transition as opposed to
just predicting the onset of amplification of small
disturbance waves has been studied by Smith and
Gamberoni (1956)(QI); Jaffe, Okamura, and Smith

(1969) (63 ; Mack (1975)(5); and Reshotko (1969).(3)
This approach is based on the observation by Michel
(1951)(“2) that the location of transition occurred
at a constant value (=e) of the amplification of
the Tollmien-Schlichting type sinusoidal distur-
bances. Presented in Figs. 61, 62, and 63 are re-
sults computed by Smith and Gamberoni(“l); Jaffe,
Okamura, and Smith(e); and Mack(s);
are made with experimental data.

and comparisons

The theoretical results presented in Figs.
61, 62, and 63 have limited application because of
the following reasons. The theory of Smith,
et al.(g‘gl) is applicable only to incompressible,
low turbulence flows. The subsonic data presented
in Figs. 61 and 62 were obtained in very low tur-
bulence wind tunnels where the free-stream distur-
bance levels were negligible. The supersonic re-

sults of Mack(®) (Fig. 63) made the assumptiomns

*The Tollwien-Schlichting type of modes was
defined as the primary mode.

that: (a) the initial disturbance amplitude (4,),
at a reference Mach number (M = 1.3), varied as
the square of the Mach number ratio; (b) the dis-
turbances in the boundary layer are proportional in
amplitude to the free-stream radiated sound; and
(c) the disturbance spectrum in the boundary layer
is flat with respect to frequency and independent
of axial location.

Of particular significance is the fact that
those methods considered free~stream disturbance
levels and the method of Mack required the radiated
noise disturbance level as a direct impact.

Kinetic Energy of Turbulence Approach

In recent years, kinetic energy of turbulence
model equations, as investigated by Shamroth and

McDonald (1972),(*9) have been used to investigate
transition as shown in Fig. 64. This method con~
sideres a particular type of free-stream distur-
bance that is introduced into the laminar boundary
layer and follows the disturbance until transition
occurs. One objection to this approach, at least
by the proponents of linear stability theory, is
the absence of a critical frequency in the theory
and only a requirement that the free-stream dis-
turbance amplitude (or energy) be specified. This
technique has also been used with some success in
predicting the occurrence of transition and of re-
laminarization of turbulent boundary layers sub-
jected to strong favorable pressure gradients. Of
particular significance to the present research is
the fact that pressure fluctuations (aerodynamic
noise) as presented in Sections 2.0 and 3.0 are con-

sidered by Shamroth and McDonald(qg) as the primary
source of the free-stream disturbances that they
incorporated into their kinetic energy of turbu-

lence formulation. Shamroth and McDonald(*?) re-
ported that only a small amount (X1%) of acoustic
energy absorption is required to trigger tramsition.
Presented in Fig. 64 are computed results of Sham-
roth and McDonald(*?) compared with experimental
heat-transfer data. It is important to note that
the acoustic energy loss (absorbed) must be speci-
fied. Therefore, for the data presented in Fig. 63
it is not known a priori which disturbance level
should be used to predict the location of tramsition.

Correlations and Semi-Empirical Methods Based
on Free-Stream Disturbance Intensities

Michel (1951)(“2) was successful in correlat-
ing low turbulence wind tunnel transition Reynolds
number data obtained on smooth surface wings having
varying pressure gradients in subsonic incompres-
sible flow. Michel used the momentum thickness
Reynolds number (Reg) as the correlating parameter.
His correlation is shown in Fig. 6l. Granville
(1974) (+0) using Michel's hypothesis that the tran-
sition Reynolds number (Rey) was related to a mo-
mentum thickness Reynolds number (Reg) successfully
correlated low-speed flows using the parameter
(Rey - Re.,) with Reg. (Below Re.,, all small dis-

turbances are damped.)

Van Driest and Blumer(17) used Liepman's
hypothesis (1943)(136) that transition will occur
at a critical Reynolds number (Re.y) that is equal
to the ratio of the turbulent shear stress (Reyn-
nolds stress) pu-u- and the viscous stress w(du/dy),
i.e., Recy = pu”v’/[u(du/dy)]. By evaluating the




Keynolds stress using Prandtl's mixing length hy-
pothesis and using the Pohlhausen velocity profile
to determine du/dy, van Driest developed a sumi-
empirical equation for tranmsitionm Reynolds number

in incompressible flow that accounts for the effect
of free-stream turbulence through the effect of the
pressure fluctuation on the pressure gradient and
consequently the velocity profile through the
Pohlhausen shape factor. Presented in Fig. 65 are
some of the classical subsonic data plotted versus
free-stream vorticity disturbance (or velocity fluc-
tuation). Included in Fig. 65 is van Driest's semi-
empirical equation with the constants adjusted to
match the older data. Note that the more recent

data of Spangler and Wells (1968)(55) are much
higher than the older Schubauer-Skramstad data

(1948).( 8)  ye115(45) developed a new expression
using the new data, and this equation is also shown

in Fig. 65. Benek and High (1974)¢137) fo11lowed
the approach used by van Driest et al. and developed
a semi-empirical expression for compressible tran-
sonic and low supersonic flow that successfully pre-
dicts transition on sharp slender cones. Typical
results are shown in Fig. 66.

Hall and Gipbings (1972)(“8) continued the
study of the influence of free-stream turbulence omn
boundary-layer transition in incompressible, zero
pressure gradient flows. Their correlation of Reet

as a function of T/U_  is shown in Fig. 67. Empiri-
cal equations developed in Ref. 48 for the beginning
and end of the transition region are included in
Fig. 67. Note that the curve developed from the

empirical method of van Driest and Blumer (1963)(17)
(see Fig. 65) is included in Fig. 67.

Dougherty (1974,1980)(36’51) conducted exten-
sive wind tunnel and flight experiments on boundary-
layer transition and free-stream disturbances. The
test model was a 5-deg, half-angle sharp come in-
strumented with surface microphones and a traversing
pitot probe. A correlation of tramsition Reynolds
numbers measured in 21 transonic wind tunnels and in
flight with the measured free-stream disturbance in-
tensities normalized by the free-s:ream dynamic
pressure was successfully develc-zd by Dougherty

(1980)(36) as shown in Fig. 68. The type of acoustic
disturbances present in the various wind tunnels and
some of the basic Re; and P/P, data were discussed
in Sections 2.0 and 3.0, Figs. 25 through 33. The
experiments by Dougherty were the first to obtain
Ret and disturbance measurements on the same model
in wind tunnels and in flight. The data obtained in
flight indicated that significant disturbance were
present in the free stream at the model location.
These disturbances emanated from either the atmos-
pheric environment or were generated by the F-15 air-
craft. These data have provided one more signifi-
cant piece of information that indicates the transi-
tion process as reflected by the experimentally
measured transition Reynolds number is dominated by
the free-stream disturbance intensity.

Harvey (1978)(“7) developed correlations of
Rey on flat plates and sharp cones as a function of
measured P/q free-stream disturbance levels for a
wide range of Mach numbers. Considerable improve-
ment was made by normalizing P with the free-stream
dynamic pressure (q.) as compared to previous cor-
relation using B/§, (see Refs. 81, 82, and 84).
Figure 69 does not reflect the difference in Re .
values on a cone at M_ = 4 and a sharp plate as pre-
sented in Fig. 38. The accuracy of the correlation
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shown in Fig. 69 will probably be on the order
z20 to :30%.

ftheoretival and experimental studies con-
tributing to the hasic understanding of the radiated
pressure field (aerodynamic noise) gencrated by a
turbulent boundary layer were reviewed in Section
2.0. Results were presented that identified the
tunnel wall turbulent-boundary-layer mean shear
and displacement thickness as major parameters in-
fluenced the radiated pressure fluctuations (3/5;).

Attempts at correlating Re; data directlv with
measured B/Q, data are hampered by inconsistencies
in the measured T/P, data and experimental scatter
(nonrepeatable) in pressure fluctuation data. Thore
are also basic differences in the absolute jevels
of intensity measured using a flat plate equinped
with microphones and hot-wire anemometers posi-
tioned in the free stream as discussed ip Sertjor
3.0 (Fig. 38).

Because of the inhereu: Jdifficulties in oh-
taining radiated ncise measurements and because
most previously published transition da.a did not
record the free-stream disturbance level, Pate

(1967,1971,1977)(26’27'50) developed correlations
of Ret as a function of radiated noise parameters.
These parameters were the tunnel-wall turbulent~
boundary-layer mean parameters (Cg and 6%*) and tun-
nel test section size (parameter C).

Beginning with the hypothesis chat Rep =
f (Cp, 8*, C), Pate successfully developed correla-
tion parameters for planar and sharp cone models.
The details of these correlation developments can
be found in Refs. 26, 27, and 50.

Presented in Fig. 70 is Pate's(50) correla-
tions of sharp-cone and planar model transition
Reynolds numbers as a function of radiated noise
parameters (Cp, 6*, and c¢). The sharp, flat-plate
correlation represents transition Reynolds number
data from 13 supersonic-hypersonic wind tunnels and
covered the Mach number range from 3 to 8 and tun-
nel sizes from 7.9-in. to 16-ft test secrions. The
sharp-cone correlation represents transition Reyn-
olds number data from 16 supersonic~hypersonic
facilities and covered the Mach number range from 3
to 20 and tunnel sizes from 5- to Sh-in.-diam test
sections. The tunnel wall turbulent skin friction
was computed using the method of van Driest II

(1956) (123) gpg includes nonadiabatic tunnel wall
effects. The tunnel wall turbulent-boundary-layer
displacement thickness (8%) was obtained from cxperi-
mental data or semi-empirical methods as discussed
in Ref. 50. Tables 5 and 6 in Ref. 50 provide de-
tailed information on test conditions. tunnel size,
method of transition measurement, amounts of adjust-
ment in Rey values, source for &% values, and iden-
tify the sources for all the data presented in Fig.
70. The following empirical equations [Egs. (2) and
(3)] were developed from the correlations in Fig. 70:%

*The correlations shown in Fig. 70 are dis-
cussed in detail in Ref. 50. Slight differences
exist in these equations as compared to the original
correlations developed by Pate in 1967 (planar) and
1971) (cone). The constant 0.0126 in Eq. (2) was
originally 0.0141 in Ref. 26 (1967). All ather con-
stants in Eqs. (2) and (3) have remuined the same.
The size parameter (C) was modified to he C = 1.0
for C;/C > 1.0 as discussed in Ref. 50.
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Essentially all of the data included in Fig.
70 are for model adiabatic wall conditions ('I'W/Taw =

1). The few data points for T,/T,, < 1 were for
M > 6. It is well known that the model wall tem-
perature (T,/T,,) can have a significant effect on
the location of transition at supersonic speeds

(M £5.218112) pp100 5 and 6 in Ref. 50 pro-
vide a tabulation of the Ty/Ty, value for each data
set. Based on the experimental results of Deem

et al.,(39) Rhudy,(12“) and Kendall,(q) it is as-
sumed that plawir and cone transition data are not a
function of T,/T,, for M_ 2 6. Therefore, all the
transition data included in Fig. 70 are assumed to
represent adiabatic wall values.

The reader is reminded that the transition
Reynolds number correlations cannot be applied to.
ballistic ranges, atmospheric free flight, or any
test environment other than a conventional wind tun—
nel (M_ 2 3) because of the obvious restrictions
imposed by the aerodynamic-noise~dominance hypothe~
sis and the correlating parameters, Cp, 6%, and C.
Similarly, since the correlation was developed for
finite-size wind tunnels, the proper boundary con-~
ditions for free flight are not included.

At first glance, Eqs. (2) and (3) appear to be
fairly simple. However, computation of the tunnel
wall turbulent-boundary-layer displacement thickness
(6%*), tunnel wall skin~friction coefficient (CFII)’

along with the tunnel free-stream unit Reynolds num-
ber and flow properties at the surface of an inviscid
cone, become a fairly involved and lengthy process.
In order to provide a systematic method for-solving
Eqs. (2) and (3) and to provide a completely
analytical technique that can be used for adequately
predicting transition locations on sharp planar and

cone models at zero angle of attack, Pate (1977) (50)
developed a math model and computer code to solve
Egs. (2) and (3). The only required input data are
model geometry (plamar or cone), axial location of
model in tunnel, tunnel test section perimeters (C),
tunnel wall temperature (T,), and test conditions,
Po, Ty, or (Re/ft) .

The algorithms developed to solve the aero-
dynamic-noise-transition empirical equations for a
sharp flat plate, Eq. (2), and sharp slender come,
Eq. (3) at zero angle of attack are presented in
detail in Appendix C of Ref. 50. The FORTRAN pro-
gram listing, operational instructions, and check
cases are included in Ref. 50.

Pate(50) made extensive comparisons between
the experimental data and calculatious from the
radiated nose~transition correlation, Egqs. (2) and
(3), and the corresponding math models and FORTRAN IV
Computer Code. Comparisons between the math model
results of Ref. 50 and experimental tramsition Reyn-
olds number data obtained on sharp flat plates (and
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hollow cylinders) and sharp slender-cones at zero
incidence in wind tunnels varying in size (test sec-
tion height) from 5 in. to 16 ft, for Mach numbers
from 3 to 14, over a unit Reynolds number range
from 0.1 x 106 to 2.5 x 106 per in. are presented in
Figs. 71 through 80.

Variations of Ret with Tunnel Size

Experimental data illustrating the large
variation of transition Reynolds numbers on sharp
flat plates and sharp slender cones with tunnel size
are presented in Fig. 71 for a Mach number from 3 to

12 and (Re/in.)m =0.20 x 106. The predicted varia-
tions of (Ret)5 with tunnel size and (Re/in.)c° =

0.20 x 106 for a Mach number ranging from 3 to 16
are included in Fig. 71. The experimental data and
the calculated results clearly illustrate the sig-
nificant and monatonic increase in Rep with increas-
ing tunnel size. The agreement between the computed
results and the experimental data is considered
good. It should be noted that the computed data
correspond to the correct tunnel wall temperature
ratio (T,/T,y) tunnel geometry and model location

as indicated in Fig. 71. Results presented in Fig.
71 show that the variation of (Ret) s with tunnel
size is -ignificant for all Mach numbers M, 2 3).
This variation must be considered when comparing
(Ret)5 data or transition-sensitive aerodynamic

data from different facilities, developing new Rey
correlations, verifying (Ret)5 theories, or planning

wind tunnel test programs where the location of
transition on the model could affect the data.

Figure 72a shows the variation in Rey data ob-
tained on planar models in five M = 3 wind tunnels
having test section heights varying from 7.7 in. to
16 ft. Data obtained in the USSR by Struminsky,
Kharitonau, and Cherhykh (1972)(102) nave provided
Rey values at considerably higher unit Reynolds num-
bers than were reported in Refs. 26 and 50. It
should be noted that the increase in Re¢ with in-
creasing Re/in. values appears to continue, at least
up to Re/in.= 2 x 106. The predicted results from -
the computer code are in good agreement with the ex-
perimental data and correctly predict the effects
of tunmnel size and unit Reynolds number.

Transition Reynolds numbers obtained in four
M_= 8 wind tunnels are shown in Fig. 72b. The

M_= 7.5 data obtained by Pate(50) is, to the
author's knowledge, the highest unit Reynolds number
wind tunnel Rey data publ.shed. As was the case at
M_ = 3, the values of (Ret)(s continue to increase

with increasing (Re/in.) values and increasing tun-
nel size. The computed values are in good agree-
ment with the experimental data.

Additional experimental data published by
Pate in Ref. 50, with results from the Radiated
Noise Tramsition Computer Code, for M =4.5, 5.0,
and 8.0 showed that variations in model axial posi-
tions within a test section will produce insignifi-
cant changes in model transitiocn locations.

Rey Trends with Mach Number and Unit

Reynolds Number

Presented in Figs. 73 and 74 are plots of
planar and cone model Re. data as a function of unit




Reynolds numbers (Re/in.)m for a wide range of Mach
numbers (Mw). The Rey data exhibit an increase with
increasing unit Reynolds number. This trend is as
expected and has been previously reported, e.g.,

see Refs. 23 and 138. The data in Figs. 73 and 74
show that the variation of Rey with unit Reynolds
number is similar over a wide range of Mach numbers
and tunnel sizes.

The variations of Re. data with Mach number
for several different size tunnels are shown in
‘Figs. 75 and 76 for planar models and sharp cone
models, respectively. Variation in Re; with M is
not strongly influenced by tunnel size for either
planar or cone models. These data also indicate
that the changes in Ret data with changing M is
significantly greater for planar models than sharp~-
cone models. The estimated values of Re, obtained
from the computer code(®%) are in good agreement
with the experimental data except for the AEDC~VKF
Tunnel D cone data at M = 4. A contributing factor
to this discrepancy between the experimental data
and computed values at M =~ 4 is the disagreement
between the meacured tunnel wall §* and the theo-
retical value of &* used in the computer code (see
Aprendix B of Ref. 50).

Additional comparisons betwe:n Eqs. (2) and
(3) and experimental data can be found in Ref. 50.
It is obvious from the results presented in Figs. 75
and 76 that transition data from different sizes of
supersonic-hypersonic wind tunnels cannot be used
to establish Mach number trends.

Figure 77 presents (Ret)5 data as a function

of cone local Mach number for a free-stream Mach
number of eight. The data for the 7.5- and 15.8-
deg cones were first published by Stain-

back (1967).(127) All of the data shown in Fig. 77

were later published by Stainback (1969).(3“) For a
given free-stream Mach number, there are two cone
angles that produce equivalent local unit Reynolds
numbers but significantly different local sone sur-
face Mach numbers (see Ref. 27 or Fig. C-1 in Appen-
dix C of Ref. 50). TFigure 77 shows that when the
lecal Mach number was changed from approximately &4
to 7 for constant free-stream conditions [constant
M _, constant (Re/in.)m], there was no significant
change (upward trend) with Mach number except at the
lowest (Re/in.)w value. Recent data published by

Owen, Horstman, Stainback (1976)(105) using the same
approach confirm the invariance of (Ret)6 with M
as shown in Fig. 78.

The experimental data presented in Figs. 77
and 78 are particularly significant to the transi-
tion-aerodynamic noise dominance theory prepared by

Pate (1967, 1971, 1974, 1977).(26-28,50,128) pp .
aerodynamic-noise-transition hypothesis formulated
by Pate and the resulting empirical equation devel-
oped [Egs. (2) and (3)] predict no change in (Ret)5

with changing M_, provided the free-stream condi-
tions M and (Re/in.)m do not change. Predictions
from the aerodynamic-noise-transition computer code
[Eq. (3) and Appendix C of Ref. 50] are presented
in Fig. 78, and the agreement with the data is con-
sidered good. Note that the computer code predicted
the slight increase in (Ret% with increasing M_ that

is evident in the data. This is a result of the ¢
values not being selected to provide a conmstant
(Re/in.)5 value as was the case for data shown in
Fig. 77.
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It should be pointed out that the 5- and 20-
deg cone angles produce equivalent local unit Reyn-
olds numbers as do the 7.5- and 15.8-deg comes for
M_ = 8 (see Fig. 77) (see Fig. C-1 of Ref. 50).
However, for the local unit Reynolds number condi-
tions to have been equivalent for both sets of cone
data as listed in Fig. 77, there would necessarily
have been a 10 to 15% difference in (Re/in.),. A
15% difference in (Re/in.)_ would produce a maximum
change in Re, of approximately 10%, and this is
well within the scatter of the data shown in Fig.
77. Consequently, it seems justified to compare
the four sets of data directly.

The results shown in Figs. 73 through 78 show
that a large part of Re. variation with unit Reyn-
olds number and Mach number in wind tunnels is re-
lated to the presence of free-stream aerodynamic

noise disturbances. Pate(27’5°) developed the
following empirical equation for the ratio of cone
to planar transition Reynolds numbers:

(Ret)6 (©
(Rey)

- Eg. (3)
Eq. (2)

s_cone cone

= 3880 (CF)I'15

¢, planar (E)flat—plate

(4)

Computed transition ratios using Eq. (4) are
presented in Fig. 79 for a large range of tunnel
sizes, Mach numbers, and (Re/in.)_ values. There
is reasonable agreement between Eq. (4) results and
the experimental data. The data also show a de-
crease in the transition ratio with an increase in
tunnel size. Additional data and discussion can be
found in Ref. 50.

Many investigators have referenced the analyt-
ical analysis and minimum critical Reynolds number

criteria of Tetervin(129a130) and Battin and Lin(131)
when attempting to explain the cone-planar (Ret)5

ratios of approximately three that have been ob-
served expc~imentally. Note that the cone/flat
plate Rey ".atio varies fromX 2.5 at M_ = 3 tox1 at
M =~ 8 to 10. Note that the correlation of Har-
va,(“7) Fig. 69, indicated equivalent Re; values
ifor cones and flat plates at low disturbance levels,
i.e. high Mach rumber:

Presented in Fig. 80 is a summary plot of the
measured versus the computed Rey values for the 262

data points used by Pate (1977)(50) in developing
the transition-aerodynamic-noise correlations and
empirical equatiouns, Eqs. (2) and (3), shown in
Fig. 70. The standard deviation (o) was 11.6% as
determined from the 262 data points. Two other
transition studies have published standard devia-
tion values for empirical prediction methods. Deem,

et al. (1965)(39) found a standard deviation of 33%
based on 291 data points as was shown in Fig. 57.

Beckwith and Bertran (1972)(33) found o = 29 to 41%
(see Fig. 58) for empirical equations developed at
NASA-LRC. Based on a direct comparison of the
standard deviation values, the method of Pate
(1977) (%) provided a considerably improved method
for predicting transition locations on planar and
sharp cone models in wind tunnels for M_> 3.

7.0 Concluding Remarks

Effects of free-stream disturbances on bound-
ary-layer transition on sharp flat plates and sharp



slender cones in conventional supersonic-hypersonic
wind tunnels, can be summarized as follows:

1.

W
.

Experimental studies have shown that free-
stream disturbance intensities present in sub-
sonic-transonic~supersonic-hypersonic wind tun-
nels have a dominating effett on boundary-layer
transition on simple geometries (flat plates

and sharp cones). Free-stream disturbances also
have a measurable effect on other boundary-
layer characteristics.

At subsonic speeds the dominant disturbance is
turbulence (velocity fluctuation, ﬁ/Uw) and/or
acoustic sound (3/q,). At transonic speeds the
dominant disturbance is acoustic noise (P/q.)
generated by the test section porous or slotted
walls. At supersonic-hypersonic Mach numbers

radiated noise (;) from the turbulent boundary
layer on the tunnel walls is the dominant source
of disturbance.

Model tranmsition Reynolds number data have been
shown to correlate with the free-stream distur-
bance intensities levels. At subsonic speeds
the correlating parameter is TW/U_ and at tran-
sonic-supersonic-hypersonic speeds it is ﬁqu.

Transition Reynolds numbers measured in super-
sonic-hypersonic tunnels are strongly dependent
on tunnel size. Data obtained in supersonic
wind tunnels (M, 2 3) having test section
heights from 0.5 to 16 ft have demonstrated a
significant and monatonic increase in transi-
tion Reynolds numbers with increasing tunnel
size. Free-stream radiated noise measurements
have shown that the intensity levels decrease
with increasing tunnel size.

Correlations of transition Reynolds numbers as
a function of the radiated noise parameters
[tunnel wall Cy and §* values and tunnel cir-
cumference (c)] have been successfully devel-
oped for 3 < M_ < 20. The resulting empirical
equations, Rey = f (Cy, 8%, c), math model,
and FORTRAN IV digital computer code will ac-
curately predict transition locations on sharp
flat plates and cones in all sizes of conven-
tional supersonic-hypersonic wind tunnels. The
standard deviation (o) between measured and
computed Rey values as determined from 262
data points was 11.67%

The ratio of cone transition Reynolds numbers
to flat-plate values does not have a constant
value of three, as often assumed. The ratio
will vary from a value of near three at M_ = 3
to near one at M = 8. The exact value is unit
Reynolds number and tunnel size dependent. The
aerodynamic-noise-transition empirical equa-
tions (above) predict that for M_ 2 10 and
(Re/in.) 2 0.4 x 106, the ratio will be less
than one.

Radiated noise dominance of the transition pro-
cess offers an explanation for the unit Reyn-
olds number effect in conventional supersonic-
hypersonic wind tunnels.
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10.

8. The effect of tunnel size on transition Reynolds
numbers must be considered in the development of
data correlations, in the evaluation of theo-

retical math models and in the analysis of tran-

sition-sensitive aerodynamic data.

9. Variation of Rey with Mach number effect can-
not be determined from data obtained in various
size conventional supersonic-hypersonic wind
tunnels because of the adverse effect of radi-

ated noise.

The boundary-layer trip correlation developed by
van Driest and Blumer (wherein the effective
transition location "knee" can be predicted) has
been shown to be valid for different sizes of
wind tunnels and is not dependent on the free-
stream radiated noise levels.
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Fig. 44. Variation of transition Reynolds numbers

size (Pate 1967, 1971).
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Fig. 62 Overall correlation of transition
data (Jaffe, Okamura, Smith 1969).
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Fig. 63 Theoretical calculations of effect of
Mach number on transition for two A/A,
and two assumptions about initial
disturbance amplitude (Mack 1975).
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; From Ref. 49 v Boltz, Kenyon, and Alten
10 [ s Dryden
N Ty =06 4t o Schubauer and Skramstad
& o  Hall and Hislop
- === }KET Theory
2 5
E N
= 3 Theory of Van Driest and Blumer (17)
- (Rey) 160 - 3+ 19.6(Rep) 12 (g 12
£ T,y = 0.4 (Rep 12
Qz \L\\
& 2 . 5 2 Theory of Van Driest and Blumer As
= \\ Modified by Wells (45)
£ 2 - 14382 Rel? (Ging)?
106 o) Rey
107 2 5 10 1t
Free- Stream Pressure Fluctuation, B” /pg

a. Effect of free-stream fluctuating pressure

on boundary-layer transition location on 0 2

sharp cones at Mg = 5. ‘{_{/U6 x 100

Fig. 65. Effect of free-stream turbulence on’
boundary-layer transition (Wells 1967).
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Fig. 64 Comparison between measured and predicted
transitional heat transfer with transition
triggered from pressure-velocity fluctua-
tion (Shamroth and McDonald 1972).
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Fig. 66. Comparisons of Benek-High method for
predicting transition with experimental
sharp cone data, M_ = 0.4-1.3 (Benek
and High 1974).
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Fig. 67. Effect of free-stream turbulence upon
transition (Hail and Gibbings 1972).

0.4 < Mg < L8 FromRef. 36
Sym Tunnel - Sym Tunnel
o AEDC Tunnel 16T ¢ NASA/Ames 12 PT
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¢ ONERA 6 x 6 S-2 Modane ¢ NASA/Langley 8TPT | Medium
v NASA/Ames 11 TWT . L4 NSR&DC 7x 10T
¥ NASA/Ames 11 TWT (Walls Taped) & NASA/Langley 4 SPT
N NASA/Ames 14 TWT ° RAE Bedford 3 x 4 HSST
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Fig. 68. Correlation of transonic wind tunnel
and flight data (Dougherty 1980).
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af From Ref, 47 Data fairing C [
i s
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Fig. 69. 1Influence of free-stream disturbance

level on transition for cones, cylinders,
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From Ref. 50

Ret Corresponds to Adiabatic Wall
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70. Correlation of planar model and sharp-
cone transition Reynolds numbers

(Pate 1977).



From Ref. 50

Solid Symbols Represent Experimental Data (Relate Tunnel

Size and Mg, to Tables 5 and 6, Ref, 50)

~—— Represents Fairing of Computed Data {Egs. (2} and 3], Ref, 50
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a. Planar model.

(Rey) 5= End of Transition Location Determined from Surface Probe
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Fig. 71. Effect of wind tunnel size on transition
Reynolds numbers for various Mach numbers

(Pate 1977).
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—£q. (2} and

Computer Code
Appendix From Ref. 50
Ref. 50
sym  Reference My c_in. Zm In- Tunnel b=0
o 102 3.0 3L6 316 USSR, T3%5
a 26 & 50 358 225  VKFLong Shroud
[} 480 485 VKF-D b Mg
a . 1600 BLO  VKF-A 4 —t
0 l 768.0 792.0  PWT-165 T g
q 102 ‘ 9.4 944 USSR, T313 Leading Edgz Geometry
5.0X106_||l||||[x| T | SRLINE SN A B B B i | T
4.0 |- From Ref. 50
3.0
Rey -
2.0
Lo ]
0.8 Y BN | i Lo 1oa gl 310l .
0.04 0.06 0.080.1 0.2 03 04 060810 2.0
Refin. x 1076
a. Flat plates, M = 3.0.
From Ref. 50 ‘Twnaw'tunnel
Sym Reference My 8 deg Tunnel wall
o 2 & 50 =75 10 AEDC VKF-F (25-in. Diam) 0.3
a 105 80 510,16 NASA-Langley (18.3-in, Diam) 0.6
a 106 8.0 10 AEDC VKF-E (I2 by 12 in.) 0.6
[ 106 80 6 9 AEDC VKF-B (50-in. Diam} 05
b=0 '
20
5 -
£ —
NASA -
- B 0 —
10 g % -
S = :
- - -
6 '6,/@/: —° 7
Rety B~ — T
ar .
B —-—Computed, Eq. {3)and Appendix C, Ref. 50
2 |- _
1 L | | N T N | 1 | |
0.1 02 0304 060810 20 30 5.0x 106
(Refin. ),
b. Sharp cones, M= 8.
Fig. 72. Variation of transition Reynolds numbers

with tunnel size (Pate 1977).
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”‘”"a‘”’tunnﬂ
sim Mo el Tunnel Reference
o 30 Lo AEDC-VKF-D (12 by 12 in.) 26 &50
o 490
¢ 50
¢ 50 REDC-VKFE |
a 60 0.8 ¢ 124
a 10 a7
o 80 06
—— Computed, Eg. (2) and Appendix E, Ref. 50
10x106
beo
From Ref. 50
1 L.l [

(Refin.),

a. Small size tunnels.

T,
AEDC (‘"na‘")tunnel
Sym Model Reference Mo Funnel  wall
o HC 26 & 50 3.0 VKF-A L0(40by40in.)
a ‘ 4.0
o 5.0
0 lg 6.0 VKF-B 0.8(50in. Diameter)
Experimental /| O ! &0 5
Fy i a 1% 50 | 03
o 26 850 80 VKF-F 0.31(40 in. Diameter)
o 39 5.0 VKF-A 10{40by40in.)
a 39 80 VKF-B 0.5(50in. Diameter)
0 39 10.2 VKF-C 0.3 (50 in. Diameter)
— Computed, Eq. {2) and Appendix C, Ref. 50
20x 106
. M
sl Mg /
16 °
10 S
[ o
i 12 g
Re.l 6 a [ 8
= a
St L
4 _‘ 8
3 o a
L ¢ 5 5
L S
s /
2 From Ref. 50 3'
Planar Models
b0
1 Leaad o Jad 1 o v daal st
003004 0.06 0.080.1 0.2 04 06 0810 L5x10°
(Refin. )y,
b. Large size tunnels.
Fig. 73. Effect of Mach number and unit Reynolds

number on planar model transition data
(Pate 1977).
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[LWA]

M o deg AEDC W AWy innel  Tunnel Test
Sym  Reference "o ¢ S Tunnel wall Section Size
o] 27450 3.0 50 VKF-D 10 by 12in.)
a & 50 45 50 VKF-D 1.0
a] 106 6.0 100 VKFE 68
¢ 106 0 300 VKF-E 0.6
computes 4120 T T %
Ref. 50 12.0 025
ef. heo - 020
50 x 100
— o Symbols - Experimental Data
[ Computed Eq. (3)and Appendix C,
- Ref, 50
B From Ref, 50
1 S A e AN TS ST NN W Y |
01 10 Tx1e
{Refin. )co
a. Small size tunnels.
(Tv/Taw)
M 8, deg tunne!
Sym  Reference "o ¢ AEDC Tunnel wall
o - &S50 30 5.0 VKF-A (40 by 40 in.) 10
o 40 50 10
o 50 5.0 Lo
a 59 50 09
bperimenaly | 106 60 60 VKB GOin. Diometr) 08
a 106 80 6.0 VKF-8 50 in, Diameter) 0.5
- 13 1.0 60 VKF-C (50 in. Dlameter) 035
o 116 142 9.0 VKF-F (54 in. Diameter) 02
~—— Computed, Eq. (3)and Appendix C, Ref. 50
100 x 16°

3 Sharp Cones

b~0

‘Ret)bls end-of-transition
as measured by a surface
pitot probe

0.1 1.0
(Relin. ‘m

b. Large size tunnels.

Effect of Mach number and unit Reynolds
number on sharp-cone transition data
(Pate 1977).

Fig. 74.
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Gy
a
P

Model Sym ¢ Tunnet Test Section Size  Reference
Sym  Reference  Configuration  Tunnel  Test Section Size X 1.5  RAE 5in. byS5in,
= . o 50  VKF-D 12in. by 12in, 21&50
[a) Flat Plate USSR 7.9by7.9in. g 100 VKEE  12in by 12in, 106
a 26 & 50 Hollow Cylinder  VKF-D 12by 12 _in. . 5.0 VKF-A  40in, by 40in, 27850
¢ Hollow Cylinder  VKF-E 12Dy 12 in. 4 60 VKF-B  50in. Diameter 106
- 10 Flat Plate VKFE  12by R2in. & 9.0  VKF-B  50in. Diameter 106
Boerimental { g 12 Flat Plate JPL-SWT 18by 20in. A 60  VKFC 50in Diameter 159
Data o 26&50 Hollow Cylinder VKF-A 40ty 401, Bgerimental /|« 375 nasA  31in. by3lin by
a 126 Hollow Cylinder VKF-B  50in. Diameter ° 50 Langley 183in. Diameter 15
& 15 Flat Plate VKF-B  50in. Diameter o 10:0 [
0 26& 50 Hollow Cylinder PWT-165 16 by 16 ft & 1.0 l
| 3 9.0  VKF-F  54in. Diameter 15
—_— lated, Eq. d ter Program Appendix C, Ref. 50 D100  VKF-F  25in. Diameter 27&50
Calculated, Ey. (2)and Computer Prog i o 50 L 9in. by 12in, 114
a] 5.0 Republic 30in, Diameter 141
b, 20x10° Av.
From Ref. 50
See Table 4, Ref. 50 for ! m
Additional {niurmation Obtained by Extrapolating Rey Values

" Rey Corresponds to Suiface for Small Bluntness (b < 0.005 in. }
Peak Pressure Location Backtob =0
6
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- . X Sym Tunnel Size
2} 6 - 2 - X Very Smait
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7.9in. 2 From Ref. 50 '8 tansition, See et 30
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Fig. 75. Variation of planar model transition Fig. 76. Variation of sharp-cone transition
Reynolds numbers with tunnel size and Reynolds numbers with tunnel size and
Mach number (Pate 1977). ) Mach number (Pate 1977). :
Tunne! Wall
1\1\1\ Radiated '
Noise
- / Constant
Mg W
4
8, deg
5 20.1 15 158
" = et . —— Computer Code
S (Rle:_z.)ﬁ (Rleél_rér‘ Yo (Rlelu;. ) {Reydg = (Refin. g x and £, ), 6, deg
m| X X x 107 Ref. 50 T
> 0,116 003 T X ddermlned frpm heag trans_rer (Refin. g 5 10 16
- 0.224 8 data obtained using fusible paint. -6 (Refin.) Refin.) Refin.),
. 0 016 Data from References 127 and 34 Sym  Reference x 10 g Jelnlp Reln.lg
o 0,483 0.38 0.34
Al 117 0.9 083 ° 105 0.5 0.38 0.32 0.329
101' . . — [s] L0 0.769 0.633 0.658
s L5 1.154 0.9 0.987
8 201 158 %09 7550
6 L From Refs. 26 and 50
sx 10| A, A Mg = 8.0
o R % s ) Data Adjusted to Equivalent Pps, Transition .
a Location Using Figure 1V-2 and Table 5, (Refin. 15
3 o 6 Ref. 50 L5
| ————___‘_'/ .
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Fig. 77. Transition Reynolds number as a function Fig. 78. Comparisons of predicted and measured
of local Mach number for sharp cones, (Ret)6 values.
M = 8.
]
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T Variation of Experimentat Data with Refin.
Symbols Are |dentified in Figure X1-2b  Ref. 50

[ {Refin. ), x 1076

. 3 [Funnel —_— .
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5 A o - 6 @

- 165

B2

&

&

s}

8

.1

K3

g [~ From Ref. 50 1

0 l 1 I L ' 1 I L [ L I L I 1
3 4 5 6 7 8 9 10
Mo

Fig. 79. Comparison of predicted and measured cone

planar transition ratios (Pate 1977).
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Fig. 80. Comparison of predicted and measured

transition Reynolds number from Fortran
Computer Program (Pate 1977).



